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ABSTRACT

Deep reinforcement learning applied to automatic navigation re-
cently achieved significant results using simulators and only images
as input in contrast to traditional approaches that often rely on sen-
sors such as lidar. Those learning methods have a wide range of
applications such as autonomous cars and social robots. However,
they can have unexpected behaviors with severe casualties (e.g. a
car crash). To understand a decision, analysts must explore its con-
text and link it with millions of deep network parameters which
is not feasible by humans in a reasonable time. As a result, the
internal process with which those models make a decision remains
misunderstood. This hinders the deployment of these algorithms in
real-life situations where regulation and accountability require better
interpretability and transparency, to ensure their fairness and safety.
With visual analytics tools, analysts can observe how models and
their inner parameters behave and thus investigate how it converges
towards a decision. We report on the progress of this PhD in this
area where we build visual analytics tools, designed to study the
memory of those models, and future works aiming at closing the
loop on insights discovered to improve future models.

Index Terms: Human-centered computing—Visual analytics—
Deep Reinforcement Learning—

1 CONTEXT OF THIS PHD

With the emergence of applications of deep learning to our everyday
life (e.g., healthcare), interpreting models’ decisions is critical for
both end-users to be able to build trust [17] on those models and
contest decisions, and for domain experts to assess the fairness and
reasoning of those decisions. Among those applications, automatic
navigation is one the most challenging problems in Computer Sci-
ence with a wide range of tasks, from finding shortest paths between
pairs of points, to efficiently exploring and covering unknown en-
vironments, up to complex semantic visual problems (“Where are
my keys?”). Addressing such problems is important for modern
applications such as autonomous vehicles to improve urban mobility,
social robots, and assisting elderly people. Historically, navigation
was often solved with discrete optimization algorithms such as Dijk-
stra [6], A-Star [10], Front-propagation [29], etc., applied in settings
where spatial maps are constructed simultaneously with solving the
navigation problem. These algorithms are well understood, but are
restricted to simple waypoint navigation i.e., graph, and are not
applicable on tasks that require a visual understanding of a scene
(e.g., what are keys). Recently, techniques from Machine/Deep
Learning have shown spectacular progress on more complex tasks
involving visual recognition, and in particular in settings where
the agent is required to discover the problem statement itself from
data. In particular, Reinforcement Learning (RL) and the underly-
ing Markov Decision Processes (MDP) provide a mathematically
founded framework for a class of problems focusing on interactions
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between an agent and its environment [25]. In combination with
deep networks as function approximators, this kind of model is
very successfully applied to problems like playing games [19, 22],
navigation in simulated environments [4, 8, 20], and work in human-
computer interaction (HCI) emerging [5].

This PhD focuses on Deep Reinforcement Learning (DRL) whose
goal is to train agents that interact with an environment. As depicted
in figure 1, the agent sequentially takes decisions at , where t is a time
instant, and receives a scalar reward Rt , as well as a new observation
ot . The reward encodes the success of the agent’s behavior, but a
reward Rt at time t does not necessarily reflect the quality of the
agent’s action at time t. As an example, if an agent is to steer an
autonomous vehicle, receiving a (very) negative reward at some
instant because the car is crashed into a wall, this reflects a sequence
of actions taking earlier then the last action right before the crash,
which is known as the credit assignment problem. The reinforcement
learning process aims at learning an optimal policy of actions which
optimizes the expected accumulated future reward Vt = ∑

t+τ

t ′=t Rt over
a horizon τ .

As trained agents are expected to be deployed to real-world prob-
lems in the near future, where failures and unexpected behaviors [16]
could lead to severe causalities, their decisions need to be under-
stood. This raises new concerns in understanding on what ground
models’ decisions (e.g., brake) are based [21]. To assess the deci-
sions of a trained model, developers [11] must explore its context
(e.g., a pedestrian on the road, speed, previous decisions) and as-
sociate it with millions of deep networks parameters which is not
feasible manually. In addition, analysts must also ensure that their
models are not exploiting any bias in their reasoning for, among
others, ethical purposes [7] which should also be considered while
designing visualizations [3].

2 VISUAL ANALYTICS AND DEEP LEARNING

We started this PhD by focusing on the interpretability of decisions
from trained deep reinforcement learning models with memory. The
memory of DRL models is a time-varying vector that models up-
dates before each decision based on features extracted from their
input (see fig. 1). Analyzing a decision after-the-fact referred to
as post-hoc interpretability [17], has been a common approach in
the visualization of Deep learning models. It consists in collecting
any relevant information such as inputs and inner-representations
produced while the model outputs decisions. With such an approach,
DRL experts can explore their models without changing them and
thus face the trade-off between interpretability and performances.
Visual analytics for post-hoc interpretability [11] yields promising
results, by providing insights on models’ decisions and inner rep-
resentations. In LSTMVis [24] users can formulate hypotheses on
how the memory behaves with respect to the current input sentence.
It displays memory elements in a parallel plot, and by selecting time
intervals highlights the most active ones. The re-ordering of mem-
ory elements using a 1D t-SNE projection applied to handwriting
trajectory prediction [1] provides an overview of the representation
and highlight patterns on how different feature dimensions reacts to
different path e.g., curvatures.

This PhD approach is related to memory dimensions displayed
over the input text of a character level prediction model [14] high-
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Figure 1: To tackle visual navigation tasks (e.g., fetch, interact, or
recognize items) while avoiding obstacles in an environment, Deep
Reinforcement Learning can be used. To do so, it uses an image
as input ¬ at time t, features are then extracted from this image ,
and combined with the previous memory vector t− 1 ®. Using this
memory vector, the agent decides on an action such as move forward
or turn left, for instance ¯.

lights characters that trigger specific memory activations, and thus
provide insights on how certain parts of the memory react to char-
acters (e.g., to quotes). RNN evaluator [18], uses the clustering of
memory elements into grids and associate them to word clusters
for each input. This tool also provides additional information on
a chosen input in a detail on demand view. RetainVis [15], a tool
applied to the medical domain, studies how a modified model out-
puts its prediction based on data. With RetainVis, a user can probe
an interesting data-point and alter it in a what-if approach to see
how it affects predictions. To reach this level of interpretability, the
model they used is altered, in a way that reduces its performances.
RNNbow [2], is a tool able to handle different type of input domains,
and can be adapted to DRL. However, RNNbow visualizes the train-
ing of RNNs rather than their decisions. Such a tool displays the
gradients extracted from the model’s training, and contextualize it
with the input sequence and its corresponding output and label. In
DRL with memory, the model does not receive a feedback at each
decision, but rather at the end of the game. This makes RNNbow
more difficult implement as it produces large batches on which this
tool have issues scaling to. This PhD expects to follow those previ-
ous works while addressing the challenge raised by DRL such as
the need to contextualize decisions with information outside models’
inputs.

3 ASSESSING THE MEMORY OF DRL AGENTS

To date, this PhD has focused on the analysis of the memory of
Deep Reinforcement Learning agents applied to navigation tasks in
simulation.

3.1 Navigation Problem Definition
We focus an a particular navigation problem referred to as k-items.
In this problem, an agent (e.g., robot, human) moves within a 2D
space referred to as environment (Fig. 1). An environment contains
obstacles (e.g., walls), items the agent may want to gather or avoid,
and is bounded (e.g., a room). The goal of the agent is to collect
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Figure 2: DRLViz displays a trained agent memory, which is a large
temporal vector, as a horizontal heat-map À. Analysts can browse
this memory following its temporal construction; filter according to
movements of the agent and derived metrics we calculated Á (e.g.,
when an item is in the field of view Â); and select the memory to filter
elements and compare them Ã.

k items in a unique order. Importantly, the goal itself needs to be
discovered by the agent through feedback in the form of a scalar
reward signal the environment provides: for instance, hitting a wall
may provide a negative reward, finding a certain item may result in
a positive reward. To discover and achieve the goal, the agent must
explore its environment using actions. Those actions are discrete
and elements of the following alphabet: a∈A, with A ={forward,
forward+right, right, left, forward+left}. The navigation task ends
when the agent reaches its goal, or when it fails (e.g., a timeout).
As the sample efficiency of current RL algorithms is limited, train-
ing requires a massive amount of interactions of the agent with
the environment—typically in the order of a billion. Simulators
can provide this amount of interactions in a reasonable time frame.
This work relies on the VIZDoom simulator in which the k-item
navigation task is formulated.

As depicted in figure 1, to navigate in a simulation, DRL agents
use an image corresponding to its field of view as input and outputs
an action. As the agent only uses its field of view as input, each
decision is based on a fraction of the environment—i.e., what is
in front of it. However, previously seen parts of the environment
may be useful for a decision. To tackle this issue, a memory has
been implemented in DRL agent. Such a memory consists of a
recurrent layer (e.g., LSTM, GRU) which buries features extracted
from images into a time-varying vector referred to as a hidden state.
This memory changes before each decision and may convey key
information on how a decision is made by the agent. In this memory,
each row referred to as an element may encode distinct information.

3.2 Contribution 1: DRLViz a Visual Analytics Interface
to Understand Decision and Memory [13]

The memory of DRL agents is at the root of their decisions, therefore
one hypothesis is that analyzing it may provide insights on their
decision process. The accumulation of memory vectors is often
represented as heatmaps in which color hues encode intensity which
may be interpreted as the corresponding element (i.e., row) having
an impact on the final decision. However, due to the size of the
memory (128 elements in this case), and the number timesteps that
can be done by the agent (i.e., 524 steps until timeout ), analyzing
such a heatmap is not trivial and can be time-consuming for experts.

We designed DRLViz [13], an interactive visual analytics tool to
help DRL experts investigate the memory of their DRL agents and
form hypotheses on what ground a decision is based.

In DRLViz, users’ explorations of the memory are carried out
using a vertical thumb similar to a slider to explore time-steps t and
select intervals. Such a selection is propagated to all the views on the



Figure 3: Memory Reduction, an online explorable in which users are
invited to try different strategies to reduce the memory of a DRL agent
an observe how it affects its behavior.

interface, whose main ones are image (perception) and probabilities
(of actions) which provide context on the agent’s decisions. The
input image can be animated as a video feed with the playback con-
trols, and a saliency map overlay can be activated [9,23] representing
the segmentation of the image by the agent. The trajectories view
(Fig. 3) displays the sequence of agent positions pt−1 > pt > pt+1
on a 2D map. This view also displays the items in the agent’s field
of view as colored circles matching the ones on the timeline. The po-
sition pt , and orientation of the agent are represented as an animated
triangle. The user can brush the 2D map to select time-steps, which
filters the memory view with corresponding time-steps for further
analysis. DRLViz, also includes a t-SNE [28] view of time-steps t
using a two-dimensional projection (Fig. 3 bottom left). T-SNE is
a dimensionality reduction technique, which shows similar items
nearby, and in this view, each dot represents a hidden state h occur-
ring in a time-step t. The dot corresponding to the current time-step
t is filled in red, while the others are blue. The user can select using
a lasso interaction clusters of hidden states to filter the memory
with the corresponding time steps. Dimensions among the selected
hidden states can then be re-ordered based on their activations (e.g.,
most active, most changing), and brushed vertically (Fig. 3 ¯). Both
DRLViz, and its code source are available online 1.

3.3 Contribution 2: Understanding the Impact of Mem-
ory Reduction in Navigation Performance [12]

The size of the memory (i.e., the number of elements), is a hyper-
parameter manually set by experts. When deciding on a size, experts
often tend to opt for a large memory to ensure that the memory is
not a bottleneck preventing the agent from learning complex be-
haviors. However, one insight discovered by DRL experts while
using DRLViz is the redundancy of memory elements. When an-
alyzing how the memory elements encode items the has collected,
the experts discovered that some memory elements were having
similar activation patterns. In addition, experts also noticed that
some remained nearly inactive during episodes. Based on these
observations, experts formulated the hypothesis that those elements
may be conveying non-necessary information, and thus that they
could be removed without affecting the agent’s behavior.

To explore such a hypothesis, we designed Memory Reduc-
tion [12], an online explorable 2 in which users are invited to test
several memory reduction strategies based on elements activations,
and observe how the agent behaves with its reduced memory. In this

1https://sical.github.io/drlviz/
2https://theo-jaunet.github.io/MemoryReduction/

Figure 4: Training an agent in the real-world from scratch requires
millions of interactions with its environment and thus is not feasible
in a reasonable time. An alternative is to train the agent in a realistic
simulation, and then rely on transfer learning approaches to reduce the
influence of mismatches between those two environments–referred to
as the reality gap).

tool, the memory is displayed as a heatmap, and removed elements
are represented as black stripes on top of it. Memory reductions are
done by multiplying the memory with a mask in which rows to be
deleted are zeros, while the rest are ones. This mask is applied to
memory before any decision at each timestep, hence removed ele-
ments values are forced to remain to zero through episodes. Among
reducing strategies such as only keep the top n most activated or most
changing elements, the most optimal reduction was achieved with
the top quarter of most changing elements and manually selected
elements. Those elements were selected based on their activation pat-
terns indicated that they could be related to the encoding of the last
item to be collected that the agent had trouble to reach in previous
reductions.

4 RESEARCH AGENDA

The remaining time of this thesis will be dedicated to deploying
DRL agents trained in simulation to real-world environments and
robots. Such a deployment will rely on transfer learning approaches
like domain randomization and domain adaptation. Domain experts
could benefit from a visual analytics tool designed along with the
deployment of those agents. DRLViz will also be improved to
provide opportunities to close the loop on insights discovered, and
improve the model studied.

4.1 From Simulator to Real Robot
To date, DRLViz has only been used with DRL models in simula-
tors, where ground truth information such as items in the field of
view of the agent, as well as the agent’s coordinates are provided.
Those models trained in simulation cannot be directly deployed into
real-life environments and robots as those environments are often
different from simulators.

A solution would be to train DRL agents directly in real-life
environments, however, as the sample efficiency of DRL is low,
agents often require millions of interactions with their environments
to grasp their goals and how to achieve them. Such an amount of
interaction is not feasible as robots may take several minutes per
games as opposed to a simulation that can run thousands of games
in seconds. Therefore to tackle such an issue, sim2real transfer
approaches are used. It consists in training the agent in a realistic
simulation and once the agent behaves well enough, deploy it in
a real-world robot. Common approaches to ease such a transfer
are domain randomization [26] which focuses on modifying the
simulator in order to make the agent more resilient to changes, and
domain adaptation [27] which focuses on learning embeddings that
suits the agent reasoning through different environments.

However the real-world environment may change, and the simu-
lator may be different from it. This may affect the agent’s behavior
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once deployed and hinder its performances. For instance, in sim-
ulation, we observed that agents tend to exploit limitations, which
are not feasible in the real-world (e.g., bumping into walls to move
faster). Domain experts need to detect this kind of mistake in the
agent behavior, investigate its source, e.g., issue in the physic engine
of the simulator, and prevent the agent to exploit it e.g., negative
reward on hitting walls. However, those behaviors and their sources
are not trivial to investigate and often requires to monitor the agent
actions, which can fastidious.

A visual analytics interface could help domain experts to inves-
tigate disparities between agents in the simulator and those in the
real-world. However, as in real-world environments, ground truth
such as the agent coordinates are not available one must rely on other
information to align and compare positions and frames to the simu-
lator. An alternative is to train a Deep Learning model to regress the
agent’s position and orientation from an image corresponding to the
field of view of the agent. This can be done using the ground truth
coordinates provided by the simulator as a label, and use trajectory
smoothing methods to attenuate mistakes that may occur when using
such a model in the real-world environment (i.e., reality gap).

With such information, the next step is to analyze the agent de-
ployed in the real-world environment. This can be an entry point
for an interactive visual analytics tool that can display gradients of
back-propagated agent decisions to identify which parameters and
parts of the input (i.e., image in this case) were impactful. This
can help experts understand what can be improved in simulation
to reduce the reality gap (e.g., dim the lights). Such a tool should
also display the agents’ inner parameters as with domain adaptation
approaches such ADDA [27], which may be relevant to grasp how
the agent handles the reality gap in its embeddings to visually assess
how effective domain adaptation methods are.

4.2 Supporting Experts in Re-Training their Models

To date, once a hypothesis on memory elements is formulated using
DRLViz, experts need to rely on external tools to provide sufficient
information to confirm or deny them. Also, once a hypothesis is
confirmed, aside from memory reduction, DRLViz offers no oppor-
tunities to improve the agent and model. This could be tackled by
providing control on the agent’s training through direct manipula-
tion. Such manipulations can directly change hyper-parameters and
parameters of the agent as it learns. As an example, one could use
DRLViz to analyze the memory of an agent through training, and
use direct manipulation interactions change the learning rate based
on observations. Experts also mentioned that freezing the weights
corresponding to memory elements could help the agent to converge
towards a behavior (e.g., on memory elements encoding uncommon
information such as the last item). If the agent is observed to fail in
particular cases, forcing the agent to be on those cases may help it
learn how to solve them. For instance, the agent gathering items in
the wrong order when both of them are in its field of view. To do so,
experts need ways to formulate configurations of the environment
(e.g., walls, items and agent positions) for the next training batch.
Finally, to date designed tools heavily rely on user exploration which
may be fastidious. To reduce such an exploration process, pattern
mining methods could be used. Those methods could also help
experts detect memory patterns unrelated to metrics or observation
and thus long term memory. However, automatic pattern detection
may also narrow the exploration of the memory, and experts may
miss unexpected behaviors. This raises the challenge of both trusting
automatic pattern detection to provide correct information, while
preserving exploration opportunities.

5 QUESTIONS FOR THE PANEL

Given the opportunity to, we would like to discuss with the panel
the following points:

How to find the right balance engineering and research? Build-
ing visual analytics interfaces applied to deep learning needs heavy
programming phases that combine both model-related work and
visualization-related work such as data processing and communi-
cation between visualization and the model. Combining those two
domains takes time, and in most cases cannot be used as a recog-
nized contribution in publications. Hence, during those program-
ming phases, we are often unable to work on scientific articles. What
would you recommend to promote such work, and to reduce those
phases?

Expert in specific DRL models are a scarce resource, what can be
done to evaluate tools? Visual analytics tools for deep reinforcement
learning models with memory applied to navigation are highly spe-
cific tools. Hence, that narrows down the number of people able to
evaluate them. As an example, in DRLViz [13], we managed to reach
three experts from our lab that did not take part in the design of the
tool to evaluate it qualitatively. Such an evaluation was qualified as
a weak point of our contribution in early reviews of DRLViz. What
would you recommend to design a stronger evaluation for our future
tools? Should we change our focus, and design more accessible
tools, and/or with broader applications to domains in order to have
more people able to evaluate them despite the risk of having limited
use for domain experts?

Finding the balance between visualization and AI? Design visual
analytics tools applied to deep learning models requires knowledge
on both of those domains. These forms of knowledge gaps can
be tackled by discussing with domain experts and collaborators to
understand, for instance, what can and should be visualized from
DL models, and how such data can be represented. However, those
exchanges can be limited by an insufficient understanding of com-
munities. Also, since such tools have contributions in two domains,
they may be submitted on both visualization and AI conferences.
How can we find a balance between focusing on only one domain,
and limit our work by being too dispersed across those domains?

6 CONCLUSION

As a first step, this thesis was focused on the design of interactive
visual analytics tools to help domain experts investigate the memory
of Deep Reinforcement Learning agents applied to navigation tasks
in simulation. With such a tool experts were able to detect activation
patterns and insights on how the agent uses its memory to decide on
which action to do. Using such insight experts can reduce the mem-
ory to its core elements in order to have less dimension to analyze
in further runs. This thesis is now aiming towards deploying agents
from simulation to reality using transfer learning approaches and
designing visual analytics tools to investigate behavior divergences
between an agent in simulation and one in reality.
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